Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice

نویسندگان

  • Yuki Takaoka
  • Shigeru Goto
  • Toshiaki Nakano
  • Hui-Peng Tseng
  • Shih-Ming Yang
  • Seiji Kawamoto
  • Kazuhisa Ono
  • Chao-Long Chen
چکیده

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an energy metabolism-related enzyme in the glycolytic pathway. Recently, it has been reported that GAPDH has other physiological functions, such as apoptosis, DNA repair and autophagy. Some in vitro studies have indicated immunological aspects of GAPDH function, although there is no definite study discussing the advantage of GAPDH as a therapeutic target. Here, we show that GAPDH has an anti-inflammatory function by using a lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury (ALI) mouse model, which is referred to as acute respiratory distress syndrome (ARDS) in humans. GAPDH pre-injected mice were protected from septic death, and their serum levels of proinflammatory cytokines were significantly suppressed. In lung tissue, LPS-induced acute injury and neutrophil accumulation were strongly inhibited by GAPDH pre-injection. Pulmonary, proinflammatory cytokine gene expression and serum chemokine expression in GAPDH pre-injected mice were also reduced. These data suggest the therapeutic potential of GAPDH for sepsis-related ALI/ARDS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tyrosine kinase inhibitor imatinib prevents lung injury and death after intravenous LPS in mice

Severe sepsis and septic shock are frequent causes of the acute respiratory distress syndrome, and important sources of human mortality. Lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls, plays a major role in the pathogenesis of severe sepsis and septic shock. LPS exposure induces the production of harmful reactive oxygen species, and the resultant oxidant injury has ...

متن کامل

XOR inhibition with febuxostat accelerates pulmonary endothelial barrier recovery and improves survival in lipopolysaccharide‐induced murine sepsis

Sepsis is a leading cause of death among patients in the intensive care unit, resulting from multi-organ failure. Activity of xanthine oxidoreductase (XOR), a reactive oxygen species (ROS) producing enzyme, is known to be elevated in nonsurvivors of sepsis compared to survivors. We have previously demonstrated that XOR is critical for ventilator-induced lung injury. Using febuxostat, a novel no...

متن کامل

Time-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury

Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time point...

متن کامل

p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress

Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...

متن کامل

Blockade of LOX-1 prevents endotoxin-induced acute lung inflammation and injury in mice.

Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a cell surface receptor expressed in endothelial cells, is known to mediate oxidized LDL-induced vascular inflammation and atherogenesis. Although the role of LOX-1 in vascular inflammation has been well established, its involvement in acute lung inflammation and injury remains unclear. In the present study, we examined the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014